Exercise 2

The purpose of these exercises is to study numerically different methods for QR factorization.

Hand-in your results electronically latest Sept. 13, 2017, 24:00h.

This lab has 5 tasks.

Task 1

Write a program which applies Gram–Schmidt orthogonalization to a given \(m \times n \) matrix \(A \) (\(m \geq n \)). It should return \(n \) orthogonal basis vectors of range(\(A \)). (Note to Python users: Write a class Orthogonalization which takes an \(m \times n \) array for instantiation. Give this class a method gramschmidt. Later this class will get more methods.)

Task 2

Choose some random matrices and test your code. Measure the orthogonality of your matrix by a couple of different criteria:

- Is the 2-norm one?
- How big is the deviation of \(Q^TQ \) from the identity matrix? Measure this in the 2-norm.
- Compute the eigenvalues of \(Q^TQ \). What do you expect they should be for an orthogonal matrix?
- Compute the determinant

Make your tests with matrices \(A \) with increasing dimensions, e.g. \(m = n + 2 \) and \(n = 1, 10, 100, 1000, 10000 \). Report your result. (Python users can define all these tests by methods of the above mentioned class. Note even the command numpy.allclose).

Task 3

Use MATLAB’s (or scipy.linalg’s) command qr to compute an orthogonal
basis of range(A). Repeat the tests of Task 2. Is there a qualitative difference? What is meant by "Gram-Schmidt is unstable"?

Task 4

Write a MATLAB or Python program performing QR factorization of a full-rank $m \times n$ matrix with Householder transformations. (Python users might want to do this by adding a corresponding method to the above mentioned \texttt{class Orthogonalisation}). Test your code by

- checking if Q is indeed orthogonal and $A = QR$.
- comparing your result to MATLAB’s qr or Python’s scipy.linalg.qr.

Task 5

(cf. Exercise 10.4 in the course book). In the course we considered reflections to orthogonalize a matrix. This led to Householder transformations to perform a QR-factorization. An alternative is to use rotations for the same purpose. The corresponding algorithm is due to Wallace Givens and called \textit{Givens Rotations}.

1. Repeat the chapter on rotations from your linear algebra course. How is a rotation in \mathbb{R}^n described?

2. Repeat the geometrical motivation of Householder transformations. Recall, the goal is to make elements in a certain column to zero to obtain at the end a triangular matrix R.

3. Without looking into literature, try to “invent” a method which uses rotations instead of reflections.

4. If you did not succeed it is time to consult literature.

5. Describe “your” method or the method you found in the literature by mathematical terms. If you consulted literature, give the corresponding reference in your report.

6. Write a program and verify the method. (Python users do this by adding another method to the previously designed class for orthogonalization methods.)

7. Compare Householder’s and Givens’ method from the computational effort aspect.

2