Exercise 4

The purpose of these exercises is to train more on various orthogonalization techniques.

Hand-in your results electronically latest Oct. 08, 2014, 24:00h.

This lab has 5 tasks.

Task 1

Let

\[
A = \begin{pmatrix}
a_{11} & w^T \\
w & A_1
\end{pmatrix}
\]

be a \(n \times n \) positive definite matrix. Show that \(a_{11} \) is strictly positive and that the \((n-1) \times (n-1) \) submatrix is positive definite.

Task 2

Show that a strictly diagonally dominant matrix \(A \) is invertible. Hint: Show that there exists no vector \(u \neq 0 \) which solves \(Au = 0 \). For this assume \(u \neq 0 \) and show that \(u \) cannot have all elements of the same size (in absolute value) and that furthermore there is no element \(u_i \) with \(|u_i| \geq |u_j| \) for all \(j \).

Task 4

Consider the matrix

\[
A = \begin{pmatrix}
5 & 0 & 0 & -1 \\
1 & 0 & -3 & 1 \\
-1.5 & 1 & -2 & 1 \\
-1 & 5 & 3 & -3
\end{pmatrix}
\]

and the matrix \(A(p) \) with the same diagonal elements as \(A \) and all other elements being scaled by \(p \in [0,1] \), i.e. \(pA_{ij} \). Note, \(A(0) \) is a diagonal matrix. Compute the eigenvalues of \(A(p) \) with \texttt{eig} and plot them in the complex plane. Vary the parameter \(p \) so that you trace in the plot their dependency on \(p \). Mark in the plot the diagonal elements of \(A \) and also the eigenvalues of \(A \) with fat circles. Mark in the same plot the Gerschgorin
discs and explain by your figure Gerschgorin’s theorem.

Task 5

This task refers to the lecture on Wednesday, Sep. 20, 2017. There are lots of ‘islands’ in the world-wide-web, meaning clusters of websites that are not connected to other parts of the world wide web via hyperlinks. Assume that there are \(r \) different clusters.

Prove: The dimension of the eigenspace to the eigenvalue 1 of the hyperlink matrix \(H \) is then at least \(r \).

You might consider as an example the disconnected hyperlink graph

\[
\begin{array}{cccc}
A & B & C & D \\
\end{array}
\]

It has the hyperlink matrix

\[
H = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{pmatrix}
\]

This matrix has then (according what you have to show) \(r = 2 \) eigenvalues \(\lambda = 1 \) with two linearly independent eigenvectors.