Exercise 4

The purpose of these exercises is to train eigenvalue methods.
Hand-in your results electronically latest Oct. 11th, 2018, 24:00h.

This lab has 4 tasks.

Task 1

Implement the QR method with Rayleigh shifts and deflations (Alg. 28.2). Test it on several symmetric matrices and compare the result with \texttt{eig}. Test it even on a symmetric orthogonal matrix. Apply it on many random symmetric matrices and make a statement about the average number of iterations you need to get the eigenvalues with a relative error \(\leq 1.e^{-8} \).

Note a matrix given by

\[
A := \text{rand}(n,n); \quad A := \frac{1}{2}(A + A^T)
\]

is a random symmetric matrix.

Task 2

Solve Exercise 25.1 in the book. Please note the hint given there. Explain how the statement \(\text{rank}(A - \lambda I) \geq m - 1 \ \forall \ \lambda \in \mathbb{C} \) is related to the statement you should prove.

Task 3 - a challenge!

Study the description of the bisection algorithm on pp. 227-229 of the course book. Implement the method and test it on matrices which are in tridiagonal form. You might take a general symmetric matrix and transform it to Hessenberg form with the Python command \texttt{scipy.linalg.hessenberg} or the matlab command \texttt{hessn}.
Task 4

Consider the matrix

\[A = \begin{pmatrix} 5 & 0 & 0 & -1 \\ 1 & 0 & -3 & 1 \\ -1.5 & 1 & -2 & 1 \\ -1 & 5 & 3 & -3 \end{pmatrix} \]

and the matrix \(A(p) \) with the same diagonal elements as \(A \) and all other elements being scaled by \(p \in [0, 1] \), i.e. \(pA_{ij} \). Note, \(A(0) \) is a diagonal matrix. Compute the eigenvalues of \(A(p) \) with \texttt{eig} and plot them in the complex plane. Vary the parameter \(p \) so that you trace in the plot their dependency on \(p \). Mark in the plot the diagonal elements of \(A \) and also the eigenvalues of \(A \) with fat circles. Mark in the same plot the Gerschgorin discs and explain by your figure Gerschgorin’s theorem.