Unit 1: The De Boor Algorithm

The DeBoor Algorithm is the central algorithm for computing splines.

In this course we take this algorithm and splines in general as a first programming task.
1.1: Cubic Spline

Definition 1. A function $s : [u_2, u_{K-2}] \subset \mathbb{R} \to \mathbb{R}^2$ is called a cubic spline if for given node points $u_0 \leq u_1 \leq \ldots \leq u_K$

- $s \in C^2([u_2, u_{K-2}])$ (twice continuously differentiable)
- $s|_{[u_i, u_{i+1}]} \in P^3([u_i, u_{i+1}])$ (cubic polynomial) with $u_i, u_{i+1} \in [u_2, u_{K-2}]$.
1.2: Basis Representation

A cubic spline has a basis representation

\[s(u) = \sum_{i=0}^{L} d_i N_i^3(u) \]

with \(L = K - 2 \) being the number of degrees of freedom of the spline (dimension of spline space) and \(d_i \in \mathbb{R}^2 \) its control points or de Boor points. The control points form the control polygon.

Führer: FMNN25 2018
1.3: Basis functions

The basis functions $N_i^3 : [u_0, u_K] \rightarrow \mathbb{R}$ are defined recursively:

Definition 2.

$$N_i^0 (u) := \begin{cases}
0 & \text{if } u_{i-1} = u_i \\
1 & \text{if } u \in [u_{i-1}, u_i) \\
0 & \text{else}
\end{cases}$$

and

$$N_i^k (u) := \frac{u - u_{i-1}}{u_{i+k-1} - u_{i-1}} N_i^{k-1} (u) + \frac{u_{i+k} - u}{u_{i+k} - u_i} N_i^{k-1} (u_i+1)$$

where we use the convention $0/0 = 0$ if nodes coincide.

Note: Comparing this definition to other definitions shows an index shift. Here we have the property that $N_i^k (u)$ is nonzero at $u_i \leq \ldots \leq u_{k+i-1}$. The recursion seems to require grid points u_{-1} and u_{K+1} but the location of these points does not affect the final result for $u \in [u_2, u_{K-2}]$ in case of cubic splines as related terms will be multiplied by zero.

Führer: FMNN25 2018
1.4 Basis Functions

Cubic B-Spline basis functions $N^3_i(u)$

$N^3_1(u)$ and $N^3_2(u)$
1.5: Evaluating Splines

Inserting this recursion into \(s(u) = \sum_{i=0}^{L} d_i N_i^3(u) \) leads to a recursive evaluation of the spline:

Let

\[
\ldots u_{I-2} \leq u_{I-1} \leq u_I \leq u < u_{I+1} \leq u_{I+2} \leq u_{I+3} \ldots
\]

be a subset of the knot sequence. Then we note, that by construction of \(N_i^3 \):

\[
s(u) = \sum_{i=0}^{L} d_i N_i^3(u) = \sum_{i=I-2}^{I+1} d_i N_i^3(u)
\]

Note: \(N_{I-2}^3 \) is nonzero in the open interval \((u_{I-3}, u_{I+1})\) and so on.
1.6: Evaluating Splines - Blossoms

Every basis function N^3_i is nonzero in exactly four intervals and in particular at three grid points. (see picture on Slide 1.4).

We denote the coefficient multiplying a basis function which is not zero at the grid points u_{I-2}, u_{I-1}, u_I by $d[u_{I-2}, u_{I-1}, u_I]$ and define

$$d[u, u_{I-1}, u_I] = \alpha(u)d[u_{I-2}, u_{I-1}, u_I] + (1 - \alpha(u))d[u_{I-1}, u_I, u_{I+1}]$$

with $\alpha(u)$ being a scalar factor, which we will precise in one of the following slides.

Führer: FMNN25 2018
1.7: Evaluating Splines - Blossoms (Cont)

Situation: \(u \in [u_I, u_{I+1}] \):

\[
d_{I-2} =: d[u_{I-2}, u_{I-1}, u_I] \\
d_{I-1} =: d[u_{I-1}, u_I, u_{I+1}] \\
d_I =: d[u_I, u_{I+1}, u_{I+2}] \\
d_{I+1} =: d[u_{I+1}, u_{I+2}, u_{I+3}]
\]

The transition from one column to the next is done by linear interpolation:

\[
d[u, u_{I-1}, u_I] = \alpha(u) d[u_{I-2}, u_{I-1}, u_I] + (1 - \alpha(u)) d[u_{I-1}, u_I, u_{I+1}]
\]

with \(\alpha(u) \)(see next slide). Note, each blossom contains at least one of the two grid points \(u_I \) and \(u_{I+1} \) or not a grid point at all.
1.8: Evaluating Splines - Blossoms (Cont)

.... with $\alpha(u)$, which depends on the span of the knot values of the corresponding blossom pair in the following way:

$$\alpha(u) := \frac{u_{\text{rightmost knot}} - u}{u_{\text{rightmost knot}} - u_{\text{leftmost knot}}}$$

where “rightmost” and “leftmost” refers to the knots in the corresponding blossom pair, e.g.

$$d[u, u_{I-1}, u_I] = \alpha(u)d[u_{I-2}, u_{I-1}, u_I] + (1 - \alpha(u))d[u_{I-1}, u_I, u_{I+1}]$$

with $\alpha(u) = \frac{u_{I+1} - u}{u_{I+1} - u_{I-2}}$.

Führer: FMNN25 2018
1.9: *De Boor algorithm - summary*

The computation of $s(u)$ requires the following steps:

1. Find the “hot” interval $u \in [u_I, u_{I+1}]$

2. Select the corresponding four control points d_{I-2}, \ldots, d_{I+1}

3. Run the blossom recursion to obtain $s(u)$.
1.10: Interpolation

Interpolation task:

Find a cubic spline which passes through given data points $(x_i, y_i), i = 0, \ldots, L$.

Here:

For a grid $u_i, i = 0, \ldots, L + 2 = K$ and given data points $(x_i, y_i), i = 0, \ldots, L$ find the control points $d_i, i = 0, \ldots, L$ of the spline s, such that (x_i, y_i) are points of the graph of s.
1.11: Greville abscissae

We consider $s(u) = \begin{pmatrix} s_y(u) \\ s_x(u) \end{pmatrix}$.

A point on the (non parametric) graph of s_x has the form

$\begin{pmatrix} s_x(u) \\ u \end{pmatrix}$

The function in the second component $f(u) = u$ is a special cubic spline with the De Boor points $\xi_i := (u_i + u_{i+1} + u_{i+2})/3$.

The ξ_i are called Greville abscissae.

The interpolation task is: find $d_i = \begin{pmatrix} d_{y_i} \\ d_{x_i} \end{pmatrix}$ such that $s_x(\xi_i) = x_i$ and $s_y(\xi_i) = y_i$.
1.12: Vandermonde like systems

This leads to two linear systems to be solved

\[
\begin{pmatrix}
N_0^3(\xi_0) & \cdots & N_L^3(\xi_0) \\
\vdots & \ddots & \vdots \\
N_0^3(\xi_L) & \cdots & N_L^3(\xi_L)
\end{pmatrix}
\begin{pmatrix}
d_{x0} \\
\vdots \\
d_{xL}
\end{pmatrix}
=
\begin{pmatrix}
x_0 \\
\vdots \\
x_L
\end{pmatrix}
\]

\[
\begin{pmatrix}
N_0^3(\xi_0) & \cdots & N_L^3(\xi_0) \\
\vdots & \ddots & \vdots \\
N_0^3(\xi_L) & \cdots & N_L^3(\xi_L)
\end{pmatrix}
\begin{pmatrix}
d_{y0} \\
\vdots \\
d_{yL}
\end{pmatrix}
=
\begin{pmatrix}
y_0 \\
\vdots \\
y_L
\end{pmatrix}
\]

Note: To be able to evaluate this system, the first and last three grid points need to have multiplicity three: \(u_0 = u_1 = u_2 \) and \(u_{K-2} = u_{K-1} = u_K \)
1.13: Banded Matrices

As the N_i^3 have compact support which spans at most 4 parameter intervals, the matrices are banded with bandwidth ≤ 4.

To solve the systems in Python use:
```
scipy.linalg.solve_banded.
```
1.14: How to find the “hot” interval

The task to find the “hot” interval can be solved in Python in several ways.

Use Booleans and argmax

```python
a = array([...])
u = 3.0
i = (a > u).argmax()
Then, \( u \in [a_{i-1}, a_i] \).
```

Alternatively, if the array is first sorted, then searchsorted can be applied

```python
a = array([...])
a.sort()  #Note, in place operation!
u = 3.0
idx = a.searchsorted([u])
i = idx[0]
Then, \( u \in [a_{i-1}, a_i] \).
```

This approach works even for arrays of \(u \)-values.