You should present your solution for this homework at the latest on Monday, 2018-04-16

This assignment has 7 tasks.

All the functions must be properly documented and also tested. We recommend that you produce a report of your work with IPython-Notebook. You may work and present in groups by two. Use the upload link http://www.maths.lth.se/na/courses/NUMA01/fiup/ to upload your code. Upload one file only, either a *.py-file or an IpythonNotebook file. You will get then an email later from one of the teaching assistants with a presentation time slot.

Quadrature

Theory

In this homework we will compute approximations to the integral

\[I = \int_a^b f(x) \, dx. \]

(1)

One method for doing this is by using the composite trapezoidal rule, given by the formula

\[I_h = \frac{h}{2} (f(a) + f(b)) + h \sum_{i=1}^{n-1} f(x_i) \]

(2)

where \(x_i = a + \frac{i}{n} (b - a), \ h = \frac{b-a}{n}. \)

Then \(I_h \approx I \) and the approximation gets better the smaller \(h \) is, i.e. the more points we divide the interval into. (Compare with the definition of the Riemann integral.)

Task 1

Write a function \(\text{ctrapezoidal}(f, a, b, n) \) which implements the trapezoidal approximation (2). Test this function for different \(n \) and compare your result to the exact integral. (Choose a simple function \(f \) that you can integrate by hand, e.g. \(e^x \). However, don’t make it too simple.)
Task 2

Write a program that calls \texttt{ctrapezoidal}(f, a, b, n) for an increasing number of discretization points \(n \) in a loop. Stop the loop when the difference of two successive results is less than a given tolerance and return the final approximation.

Task 3

Write a function that makes an accuracy plot of the type depicted in the following figure. This plots the error \(|I_h - I|\) against the step size \(h \).

We make a loglog-plot, because we expect the error to be proportional to \(h^2 \) for small \(h \), that is, \(\text{error} = C h^2 \). Taking the logarithm of both sides yields

\[
\log \text{error} = 2 \log h + \log C.
\]

This means that we should see a straight line of slope 2 if everything is correct. You do not need to take all \(n = 1, 2, 3, \ldots \), it is enough to take e.g. \(n = 1, 2, 4, 8, \ldots \). (See the command \texttt{loglog} for making figures in a double logarithmic scale and \texttt{grid} for turning on the grid.)

![Accuracy plot](image-url)
Interpolation

Theory

We consider a method for interpolating a sequence of points. In other words we want to find a polynomial function \(P(x) \) of lowest possible degree such that \(P(x_i) = y_i \) where \(x_i \) and \(y_i \) are given points - often they are called data measurements \((x_i, y_i)\). According to theory if \(N+1 \) points are given, there is a unique polynomial of degree \(N \) which passes through these \(N+1 \) points.

How to find the interpolation polynomial?

Let \(P(x) \) be an \(N \) degree polynomial,

\[
P(x) = c_N x^N + c_{N-1} x^{N-1} + \cdots + c_1 x + c_0
\]

which interpolates the \(N+1 \) points \((x_i, y_i)\). In other words \(P(x_i) = y_i \) for \(i = 0 \ldots N \).

Our task is to find the values of the coefficients \(c_i \) for this polynomial. To compute these coefficients we create the following equation system

\[
P(x_i) = c_N x_i^N + c_{N-1} x_i^{N-1} + \cdots + c_1 x_i + c_0 = y_i, \quad i = 0, \ldots, N.
\]

The above equation system can be written in matrix form as:

\[
\begin{pmatrix}
 x_0^N & x_0^{N-1} & \cdots & x_0^1 & x_0^0 \\
x_1^N & x_1^{N-1} & \cdots & x_1^1 & x_1^0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
x_N^N & x_N^{N-1} & \cdots & x_N^1 & x_N^0 \\
\end{pmatrix}
\begin{pmatrix}
 c_N \\
c_{N-1} \\
 \vdots \\
c_0
\end{pmatrix}
= \begin{pmatrix}
 y_0 \\
y_1 \\
 \vdots \\
y_N
\end{pmatrix}
\]

We define the matrix \(V \), the coefficient vector \(c \) and the right-hand side \(y \),

\[
V c = y.
\]

Eventually we will solve the above matrix system for the coefficients \(c \).

Task 4

Given a vector \(x \) of length \(N+1 \), write a Python function that constructs the matrix

\[
\begin{pmatrix}
 x_0^N & x_0^{N-1} & \cdots & x_0^1 & x_0^0 \\
x_1^N & x_1^{N-1} & \cdots & x_1^1 & x_1^0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
x_N^N & x_N^{N-1} & \cdots & x_N^1 & x_N^0 \\
\end{pmatrix}
\]

where the \(x_i \) are the components of the vector \(x \) (numbered from zero).

Recall the function \texttt{column_stack} can help you to stack vectors horizontally.
Task 5

Now we solve for the coefficient vector c. Write a function `interpoly` that computes this coefficient vector c given input vectors x and y.

Hint. The Python `scipy.linalg.solve` is able to automatically solve for c for an equation system such as (3). Read the documentation on `solve`.

Task 6

Now we evaluate our polynomial P. Write a function `polyval`, which has c and z as input and which computes the polynomial for that input vector z as follows,

$$P(z) = \sum_{i=0}^{N} c_i z^{N-i}.$$

Task 7

Test these last three python functions you wrote above with input arguments,

$$x = (0.0, 0.5, 1.0, 1.5, 2.0, 2.5),$$
$$y = (-2.0, 0.5, -2.0, 1.0, -0.5, 1.0).$$

a) Plot the polynomial P over the range $[0, 3]$ as a dotted green line.

b) Include on the same plot also the data points (x_i, y_i) as small red stars.

c) Use a legend to denote which are the data points and which is the interpolating polynomial. Include a grid.

Good luck!