On a Helmholtz transmission problem in planar domains with corners

Johan Helsinga,*, Anders Karlssonb

aCentre for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden
bElectrical and Information Technology, Lund University, Box 118, 221 00 Lund, Sweden

Abstract

A particular mix of integral equations and discretization techniques is suggested for the solution of a planar Helmholtz transmission problem with relevance to the study of surface plasmon waves. The transmission problem describes the scattering of a time harmonic transverse magnetic wave from an infinite dielectric cylinder with complex permittivity and sharp edges. Numerical examples illustrate that the resulting scheme is capable of obtaining total magnetic and electric fields to very high accuracy in the entire computational domain.

Keywords: Corner singularity, Helmholtz equation, Nyström discretization, Scattering, Surface plasmon wave

2010 MSC: 78M15, 65N38, 35Q60, 35J05, 31A10

1. Introduction

This paper is about solving a classic transmission problem for the Helmholtz equation in the plane using integral equation techniques. A physical interpretation is that an incident time harmonic transverse magnetic wave, in a medium with unit permittivity, is scattered from a homogeneous dielectric cylinder with permittivity ε. The problem is to find the total magnetic field U everywhere.

When ε is real and positive and when the object boundary Γ is smooth, this problem is uncomplicated. Efficient boundary integral equations and fast solution techniques have long since been established and their use in computational physics is standard practice. See [21] for pioneering numerical work and [6] for an overview of more recent development. The only issue that, perhaps, still is not completely resolved is how to compute U and its gradient ∇U in an appropriate fashion close to Γ in a post-processor [1, 16].

*Corresponding author. URL: http://www.maths.lth.se/na/staff/helsing/
Email addresses: helsing@maths.lth.se (Johan Helsing), anders.karlsson@eit.lth.se (Anders Karlsson)

Preprint submitted to Journal of Computational Physics January 7, 2018
When \(\varepsilon \) is not real and positive and when \(\Gamma \) is not smooth, the transmission problem gets harder. Issues arise relating to modeling, the existence and the uniqueness of solutions, and resolution. A particularly difficult situation is when \(\varepsilon \) is real and negative and \(\Gamma \) has sharp corners. The excitation of rapidly oscillating corner fields and their interaction with surface plasmon waves then make the choice of integral equations and discretization techniques crucial. To our knowledge, integral equation methods have not been used in this context, but a finite element solver has recently been developed [5]. This solver, which relies on so-called perfectly matched layers at the corners, is capable of producing convergent results also for challenging setups.

We will review integral equations for the Helmholtz transmission problem and show that a system of equations due to Kleinman and Martin [15] is well suited for our purposes. In passing we observe that another, seldom used, integral equation from [15] is surprisingly efficient when \(\varepsilon \) is real and positive and when the accurate evaluation of \(\nabla U \) close to \(\Gamma \) is of concern. The successful use of integral equations in computations is, of course, coupled to the choice of discretization scheme. We use standard Nyström discretization, accelerated with recursively compressed inverse preconditioning, and product integration for the evaluation of layer potentials close to their sources [8, 9]. As a result, we can solve the transmission problem for negative \(\varepsilon \) (in a limit sense) in domains with corners and rapidly obtain corner fields and surface plasmon waves with a precision of about thirteen digits, even close to \(\Gamma \).

The rest of the paper is organized as follows: Section 2 presents the transmission problem as a system of partial differential equations (PDEs). Section 3 reviews some popular integral equation reformulations which all work well for \(\varepsilon \) real and positive. Section 4 is on discretization. Special emphasis is given to the treatment of singularities and near-singularities of kernels that occur in field representations and systems of integral equations. The basic evaluation strategy is the same as in [8, 10], but the treatment of the hypersingularity in the gradient of the acoustic double layer potential operator is new. Section 5 reviews results on the existence and uniqueness of solutions to the PDEs and to the integral equations. These issues are extremely important when \(\varepsilon \) is not real and positive and \(\Gamma \) has sharp corners. An incorrect choice of integral equations or an inadmissible choice of \(\varepsilon \) inevitably leads to spurious resonances, or to no solution at all. In Sections 6, 7, and 8 we strive to summarize the fascinating physics which is illustrated by the numerical examples at the end of the paper.

2. PDE formulation of the transmission problem

A homogeneous dielectric inclusion, a domain \(\Omega_2 \) with boundary \(\Gamma_2 \), is embedded in a homogeneous dielectric medium \(\Omega_1 \) in the plane \(\mathbb{R}^2 \). The
outward unit normal at position \(r = (x, y) \) on \(\Gamma \) is \(\nu \). The ratio between the permittivities in \(\Omega_2 \) and \(\Omega_1 \) is \(\varepsilon \). An incident plane wave
\[U^{\text{in}}(r) = e^{ik_1(r-d)}, \quad r \in \mathbb{R}^2, \] (1)
has wavenumber \(k_1 \) and direction \(d \). Let the wavenumber in \(\Omega_2 \) be
\[k_2 = \sqrt{\varepsilon} k_1. \] (2)
A transmission problem for the Helmholtz equation can now be formulated: find \(U(r) \) which solves the system of PDEs
\[\Delta U(r) + k_2^2 U(r) = 0, \quad r \in \Omega_1, \] (3)
\[\Delta U(r) + k_2^2 U(r) = 0, \quad r \in \Omega_2, \] (4)
with boundary conditions
\[\lim_{\Omega_1 \ni r \to r^o} U(r) = \lim_{\Omega_2 \ni r \to r^o} U(r), \quad r^o \in \Gamma, \] (5)
\[\lim_{\Omega_1 \ni r \to r^o} \varepsilon \nu \cdot \nabla U(r) = \lim_{\Omega_2 \ni r \to r^o} \nu \cdot \nabla U(r), \quad r^o \in \Gamma, \] (6)
\[U(r) = U^{\text{in}}(r) + U^{\text{sc}}(r), \quad r \in \Omega_1, \] (7)
\[\lim_{|r| \to \infty} \sqrt{|r|} \left(\frac{\partial}{\partial |r|} - ik_1 \right) U^{\text{sc}}(r) = 0. \] (8)
Here \(U^{\text{sc}}(r) \) can be interpreted as a scattered field.

We are chiefly interested in computing the real fields
\[H(r, t) = \Re \{ U(r) e^{-it} \}, \quad r \in \Omega_1 \cup \Omega_2, \] (9)
\[\nabla H(r, t) = \Re \{ \nabla U(r) e^{-it} \}, \quad r \in \Omega_1 \cup \Omega_2, \] (10)
where \(t \) denotes time. The field \(H(r, t) \) can be interpreted as a time harmonic magnetic wave in a setting where the PDE models a three-dimensional transverse translation-invariant electromagnetic transmission problem for the Maxwell equations, with magnetic and electric fields
\[\mathbf{H}(r) = U(r) \hat{z}, \] (11)
\[\mathbf{E}(r) = \begin{cases} \frac{i k_1^{-1}}{} \nabla U(r) \times \hat{z}, & r \in \Omega_1, \\ \frac{i k_1^{-1}}{\varepsilon} \nabla U(r) \times \hat{z}, & r \in \Omega_2. \end{cases} \] (12)
Here \(\hat{z} \) is a unit vector perpendicular to the plane, the electric field is scaled with the wave impedance of free space, and the gradient \(\nabla U(r) \) is augmented with a zero third component in the cross product.

3. Integral equation formulations

This section reviews some popular integral equation reformulations of the transmission problem in Section 2 in a uniform notation.
3.1. Bessel functions, kernels, and vectors

In what follows, $J_n(x)$ and $Y_n(x)$ are nth order Bessel function of the first and second kind and

$$H_n^{(1)}(x) = J_n(x) + iY_n(x)$$

is the nth order Hankel function of the first kind. We extend the definition of the outward unit normal ν at a point $r \in \Gamma$ so that if $r \not\in \Gamma$, then ν is to be interpreted as an arbitrary unit vector associated with r. The fundamental solution to the Helmholtz equation is taken to be

$$\Phi_k(r, r') = \frac{i}{2} H_0^{(1)}(k|r - r'|),$$

where k is a wavenumber. We shall also use the double-layer type kernels with $r' \in \Gamma$ and ν' the outward unit normal at r',

$$D(r, r') = -\frac{\nu \cdot (r - r')}{|r - r'|^2} \quad \text{and} \quad D(r', r) = \frac{\nu' \cdot (r - r')}{|r - r'|^2}.$$

The boundary Γ has positive orientation and a parameterization called $r(s)$. At times we identify vectors r, r', ν, ν' in the real plane \mathbb{R}^2 with points z, τ, n_z, n_τ in the complex plane \mathbb{C}. Conjugation of complex quantities is indicated with an overbar symbol.

3.2. A standard choice of operators

We use standard definitions of the single- and double-layer potentials and their normal derivatives [4, Eqs. (3.8)–(3.11)]

$$S_k \rho(r) = \int_{\Gamma} \Phi_k(r, r') \rho(r') \, d\ell',$$

$$K_k \rho(r) = \int_{\Gamma} \frac{\partial \Phi_k}{\partial \nu'}(r, r') \rho(r') \, d\ell',$$

$$K_k^A \rho(r) = \int_{\Gamma} \frac{\partial \Phi_k}{\partial \nu}(r, r') \rho(r') \, d\ell',$$

$$T_k \rho(r) = \int_{\Gamma} \frac{\partial^2 \Phi_k}{\partial \nu \partial \nu'}(r, r') \rho(r') \, d\ell',$$

where $d\ell$ is an element of arc length. For $r \in \Gamma$ it holds [4, Eqs. (3.12)–(3.13)]

$$K_k K_k - S_k T_k = I,$$

$$K_k^A K_k^A - T_k S_k = I.$$
3.3. The first set of Kleinman–Martin equations

Kleinman and Martin [15, Section 4.1] suggest the field representation

\[U(r) = U^{\text{in}}(r) + \frac{1}{2}K_{k_1}\mu(r) + \frac{1}{2}S_{k_1}\rho(r), \quad r \in \Omega_1, \quad (22) \]

\[U(r) = \frac{\varepsilon}{2}K_{k_2}\mu(r) + \frac{c}{2}S_{k_2}\rho(r), \quad r \in \Omega_2, \quad (23) \]

where \(c \) is a constant such that \(c + \varepsilon \neq 0 \) and

\[\arg(c) = \begin{cases} \arg(\varepsilon k_2) & \text{if } \Re\{k_1\} \geq 0, \\ \arg(\varepsilon k_2) - \pi & \text{if } \Re\{k_1\} < 0. \end{cases} \quad (24) \]

The corresponding system of integral equations is

\[\begin{bmatrix} I - \alpha_2 K_{k_2} + \alpha_1 K_{k_1} \\ \alpha_4 (T_{k_2} - T_{k_1}) \end{bmatrix} \begin{bmatrix} -\alpha_1 (cS_{k_2} - S_{k_1}) \\ I + c\alpha_3 K_{k_2}^A - \alpha_4 K_{k_1}^A \end{bmatrix} \begin{bmatrix} \mu(r) \\ \rho(r) \end{bmatrix} = \begin{bmatrix} f_1(r) \\ f_2(r) \end{bmatrix}, \quad (25) \]

with \(r \in \Gamma \) and

\[f_1(r) = -2\alpha_1 U^{\text{in}}(r), \quad f_2(r) = 2\alpha_4 \frac{\partial U^{\text{in}}}{\partial \nu}(r), \quad (26) \]

\[\alpha_1 = \frac{1}{1 + \varepsilon}, \quad \alpha_2 = \frac{\varepsilon}{1 + \varepsilon}, \quad \alpha_3 = \frac{1}{c + \varepsilon}, \quad \alpha_4 = \frac{\varepsilon}{c + \varepsilon}. \quad (27) \]

The choice \(c \) in (24) guarantees the uniqueness of the solution \(\mu, \rho \) to (25) under certain conditions. See, further, Section 5.2.

The equations (22), (23), and (25) will be referred to as the KM1 representation and system, or simply the KM1 equations.

3.4. The second set of Kleinman–Martin equations

Kleinman and Martin [15, Section 4.2] also suggest the field representation

\[U(r) = U^{\text{in}}(r) + \frac{1}{2}K_{k_1}\mu(r) - \frac{1}{2}S_{k_1}\rho(r), \quad r \in \Omega_1, \quad (28) \]

\[U(r) = -\frac{1}{2}K_{k_2}\mu(r) + \frac{\varepsilon}{2}S_{k_2}\rho(r), \quad r \in \Omega_2, \quad (29) \]

where the layer densities \(\mu \) and \(\rho \) have the physical interpretations

\[\mu(r) = \lim_{\Omega_1 \ni r \to r^0} U(r), \quad r^0 \in \Gamma, \quad (30) \]

\[\rho(r) = \lim_{\Omega_1 \ni r \to r^0} \nu^0 \cdot \nabla U(r), \quad r^0 \in \Gamma. \quad (31) \]

The corresponding system of integral equations is

\[\begin{bmatrix} I + \alpha_1 K_{k_2} - \alpha_2 K_{k_1} \\ \alpha_1 (T_{k_2} - T_{k_1}) \end{bmatrix} \begin{bmatrix} -\alpha_2 (S_{k_2} - S_{k_1}) \\ I - \alpha_2 K_{k_2} + \alpha_1 K_{k_1}^A \end{bmatrix} \begin{bmatrix} \mu(r) \\ \rho(r) \end{bmatrix} = \begin{bmatrix} f_1(r) \\ f_2(r) \end{bmatrix}, \quad (32) \]
with \(r \in \Gamma \) and

\[
f_1(r) = 2\alpha_2 U_{\text{in}}(r), \quad f_2(r) = 2\alpha_1 \frac{\partial U_{\text{in}}}{\partial \nu}(r),
\]

\[
\alpha_1 = \frac{1}{1 + \varepsilon}, \quad \alpha_2 = \frac{\varepsilon}{1 + \varepsilon}.
\]

The equations (28), (29), and (32) will be referred to as the KM2 representation and system, or simply the KM2 equations.

An advantage with the KM2 representation is that, by adding the null-fields of [15, Eqs. (3.15a) and (3.14b)] to (28) and (29), it can be written

\[
U(r) = U_{\text{in}}(r) - \frac{1}{2} (K_{k_2} - K_{k_1}) \mu(r) + \frac{1}{2} (\varepsilon S_{k_2} - S_{k_1}) \rho(r), \quad r \in \Omega_1 \cup \Omega_2.
\]

The representation (35) contains the difference operator \(K_{k_2} - K_{k_1} \) whose kernel is smoother close to \(\Gamma \) than those of the individual operators \(K_{k_2} \) and \(K_{k_1} \) in (22), (23), (28), and (29). As we shall see in Section 9.6, the stabilizing effect of using (35) is particularly pronounced when the gradient field \(\nabla U(r) \) is computed.

3.5. The Greengard–Lee equations

Greengard and Lee use the field representation [6, Eq. (8)] that results from setting \(c = 1 \) in the KM1 equations. The corresponding system of integral equations [6, Eq. (11)] is therefore identical to (25) with \(c = 1 \). The equations (22), (23), and (25) with \(c = 1 \) will be referred to as the GL representation and system, or simply the GL equations.

3.6. The Kress–Roach and Müller–Rokhlin equations

Kress and Roach [17] and Rokhlin [21] study the transmission problem of Section 2 with the boundary conditions (5) and (6) replaced by

\[
\lim_{\Omega_1 \ni r \to r^0} U(r) = \lim_{\Omega_2 \ni r \to r^0} \varepsilon U(r), \quad r^0 \in \Gamma,
\]

\[
\lim_{\Omega_1 \ni r \to r^0} \nu^o \cdot \nabla U(r) = \lim_{\Omega_2 \ni r \to r^0} \nu^o \cdot \nabla U(r), \quad r^0 \in \Gamma.
\]

The field representation and system in [17] is similar to the KM1 equations, but contains two free parameters \(c_1 \) and \(c_2 \). One can view the KM1 equations as a simplification of the Kress–Roach equations and we will not investigate the latter equations numerically in this work.

The field representation for \(U(r) \) in [21] is

\[
U(r) = U_{\text{in}}(r) + \frac{1}{2} K_{k_1} \mu(r) + \frac{1}{2} S_{k_1} \rho(r), \quad r \in \Omega_1,
\]

\[
U(r) = \frac{1}{2} K_{k_2} \mu(r) + \frac{1}{2 \varepsilon} S_{k_2} \rho(r), \quad r \in \Omega_2.
\]
This representation gives rise to a system of integral equations, often called the Müller–Rokhlin equations, which is identical to the KM1 system with $c = 1$ and the GL system. Since the representation for $U(r)$ in (39) differs from $U(r)$ in (23) with $c = 1$, the expression (9) for $H(r, t)$ changes into

$$H(r, t) = \begin{cases} \Re \{ U(r)e^{-it} \}, & r \in \Omega_1, \\ \Re \{ \varepsilon U(r)e^{-it} \}, & r \in \Omega_2, \end{cases} \quad (40)$$

and the expression (10) for $\nabla H(r, t)$ undergoes an analogous change.

4. Discretization

We discretize and solve the integral equations of Section 3 using Nyström discretization with composite n_{pt}-point Gauss–Legendre quadrature as underlying quadrature. Most often we choose $n_{pt} = 16$.

When the boundary Γ contains corners, the Nyström scheme is accelerated and stabilized with recursively compressed inverse preconditioning (RCIP). The RCIP technique accomplishes, in linear or sublinear time, a lossless compression of Fredholm second kind integral equations discretized on meshes increasingly refined in the direction toward corner vertices. The final preconditioned system is solved for transformed layer densities, represented by their values at discretization points only on a coarse mesh on Γ. See the compendium [9] for a detailed review of RCIP acceleration of Nyström schemes. See also [11, 12] for applications of these techniques to the solution of integral equations that are similar to those of Section 3.

When operator kernels $G(r, r')$ contain singularities, or near-singularities, we replace the Gauss–Legendre quadrature, on quadrature panels affected, with a product integration scheme. This scheme was first described in [8, Section 2] and further developed in [10, Section 6] and has as its key the construction of a split

$$G(r, r') \, d\ell' = G_0(r, r') \, d\ell' + \log |r - r'| G_L(r, r') \, d\ell' + \Re \left\{ \frac{G_C(z, \tau) \, d\tau}{i(\tau - z)} \right\} + \Re \left\{ \frac{G_H(z, \tau) \, d\tau}{i(\tau - z)^2} \right\}, \quad (41)$$

where $G_0(r, r')$, $G_L(r, r')$, $G_C(z, \tau)$, and $G_H(z, \tau)$ are smooth functions and complex notation is used as explained in Section 3.1. Product integration weights for the kernels of (41) are then obtained using analytical methods and recursion or, when $r \in \Gamma$, alternatively by local regularization [8, Section 2]. The scheme requires explicit formulas for $G(r, r')$, $G_L(r, r')$, $G_C(z, \tau)$, and $G_H(z, \tau)$, while $G_0(r, r')$ needs only to be known if $r \in \Gamma$ and then only in the limit $r' \to r$.

In the remainder of this section the singular nature of the kernels of S_k, K_k, K_k^λ, and T_k is explored, so that splits of the form (41) can be constructed.
4.1. Expansions of $Y_n(x)$ around $x = 0$

The following series expansions \cite{13} of $Y_n(x)$ around $x = 0$ are useful:

\[Y_0(x) = \frac{2}{\pi} J_0(x) \log \left(\frac{x}{2} \right) - \frac{2\psi(1)}{\pi} - \frac{1}{\pi} \sum_{j=1}^{\infty} \frac{(-1)^j 2\psi(j+1)}{j! j!} \left(\frac{x}{2} \right)^{2j}, \quad (42) \]

\[Y_1(x) = \frac{2}{\pi} J_1(x) \log \left(\frac{x}{2} \right) - \frac{2}{\pi x} \]
\[- \frac{1}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^j (\psi(j+1) + \psi(j+2))}{j! (j+1)!} \left(\frac{x}{2} \right)^{2j+1}, \quad (43) \]

\[Y_2(x) = \frac{2}{\pi} J_2(x) \log \left(\frac{x}{2} \right) - \frac{4}{\pi x^2} - \frac{1}{\pi} \]
\[- \frac{1}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^j (\psi(j+1) + \psi(j+3))}{j! (j+2)!} \left(\frac{x}{2} \right)^{2j+2}, \quad (44) \]

where $\psi(\cdot)$ is the digamma function.

4.2. The kernel of S_k

For arbitrary wavenumber k and with r not necessarily on Γ we have

\[S_k(r, r') = \frac{i}{2} H_0^{(1)}(k|r - r'|). \quad (45) \]

Using (13) and (42) one can split $G(r, r') = S_k(r, r')$ in the form (41) with

\[G_L(r, r') = - \frac{1}{\pi} J_0(k|r - r'|), \quad (46) \]

$G_C = 0$, $G_H = 0$, and general limit

\[\lim_{r' \to r} G_0(r, r') = \frac{i}{2} \frac{1}{\pi} \left(\log(k/2) - \psi(1) \right). \quad (47) \]

4.3. The kernel of K_k

For arbitrary wavenumber k and with r not necessarily on Γ we have

\[K_k(r, r') = \frac{i}{2} k|r - r'| H_1^{(1)}(k|r - r'|) D(r', r), \quad (48) \]

with $D(r', r)$ as in (15). In the limit of $k \to 0$ this means

\[K_0 \rho(r) = \frac{1}{\pi} \int_{\Gamma} D(r', r) \rho(r') \, d\ell' = -\Re \left\{ \frac{1}{\pi i} \int_{\Gamma} \frac{\rho(\tau) \, d\tau}{\tau - z} \right\}, \quad (49) \]
which is the Neumann–Poincaré operator with negative sign. Using (13) and (43) one can split $G(r, r') = K_k(r, r')$ in the form (41) with

$$G_L(r, r') = -\frac{1}{\pi} k |r - r'| J_1(k |r - r'|) D(r', r), \quad (50)$$

$$G_C(z, \tau) = -\frac{1}{\pi}, \quad (51)$$

$G_H = 0$, and general limit

$$\lim_{r' \to r} G_0(r, r') = 0. \quad (52)$$

For r on smooth Γ and with G_C as in (51), the third term on the right hand side of (41) is smooth and should be included in the first term. Then $G_C = 0$ and

$$\lim_{r' \to r} G_0(r, r') = \frac{\langle \nu \cdot \dddot{r} \rangle}{2\pi |\dot{r}|^2}, \quad (53)$$

where $\dot{r} = dr(s)/ds$ and $\dddot{r} = d^2 r(s)/ds^2$.

Note that, thanks to k-independence in (51), the term associated with G_C in (41) cancels out in difference operators $K_{k_2} - K_{k_1}$.

4.4. The kernel of K^A_k

For arbitrary wavenumber k and with r not necessarily on Γ we have

$$K^A_k(r, r') = \frac{i}{2} k |r - r'| H^{(1)}_1(k |r - r'|) D(r, r'), \quad (54)$$

with $D(r, r')$ as in (15). In the limit of $k \to 0$ this means

$$K^A_0 \rho(r) = \frac{1}{\pi} \int_{\Gamma} D(r, r') \rho(r') \, d\ell' = \Re \left\{ \frac{1}{\pi i} \int_{\Gamma} \frac{n_z \bar{n}_r \rho(\tau) \, d\tau}{r - z} \right\}. \quad (55)$$

Using (13) and (43) one can split $G(r, r') = K^A_k(r, r')$ in the form (41) with

$$G_L(r, r') = -\frac{1}{\pi} k |r - r'| J_1(k |r - r'|) D(r', r), \quad (56)$$

$$G_C(z, \tau) = \frac{n_z \bar{n}_r}{\pi}, \quad (57)$$

$G_H = 0$, and general limit

$$\lim_{r' \to r} G_0(r, r') = 0. \quad (58)$$

For r on smooth Γ and with G_C as in (57), the third term on the right hand side of (41) is smooth and should be included in the first term. Then $G_C = 0$ and

$$\lim_{r' \to r} G_0(r, r') = \frac{\langle \nu \cdot \dddot{r} \rangle}{2\pi |\dot{r}|^2}. \quad (59)$$
4.5. The kernel of T_k

For arbitrary wavenumber k and with r not necessarily on Γ we have

$$T_k(r, r') = \frac{i}{2} k |r - r'| H_1^{(1)}(k |r - r'|) \frac{(\nu \cdot \nu')}{|r - r'|^2} + \frac{i}{2} (k |r - r'|)^2 H_2^{(1)}(k |r - r'|) D(r, r') D(r', r). \quad (60)$$

Using (13) and (44) one can split $G(r, r') = T_k(r, r')$ in the form (41) with

$$G_L(r, r') = -\frac{k}{\pi} J_1(k |r - r'|) \frac{(\nu \cdot \nu')}{|r - r'|} - \frac{1}{\pi} (k |r - r'|)^2 J_2(k |r - r'|) D(r, r') D(r', r), \quad (61)$$

$$G_C(z, \tau) = -\frac{k^2}{2\pi} \Re \{ n_z(\bar{\tau} - \bar{z}) \}, \quad (62)$$

$$G_H(z, \tau) = -\frac{n_z}{\pi}. \quad (63)$$

and general limit

$$\lim_{r' \to r} G_0(r, r') = \frac{i}{4} k^2 - \frac{1}{4\pi} k^2 (2 \log(k/2) - 2\psi(1) - 1). \quad (64)$$

For r on smooth Γ and with G_C as in (62), the third term on the right hand side of (41) is smooth, has zero limit as $r' \to r$, and should be included in the first term. Then $G_C = 0$, but (64) is unaffected.

Note that, thanks to k-independence in (63), the term associated with G_H in (41) cancels out in difference operators $T_{k_2} - T_{k_1}$.

5. Existence and uniqueness of solutions

This section collects known results on the existence and the uniqueness of solutions to the PDE (3)–(8) and to the system of integral equations in Section 3.

5.1. Uniqueness: the PDE

According to the uniqueness theorem of [15, Section 2], if Γ is smooth, if $k_1 \neq 0$, and if (2) is assumed, a solution to (3)–(8) is unique if

$$0 \leq \arg(k_1) < \pi, \quad |\varepsilon| \neq \infty, \quad 0 \leq \arg(\varepsilon k_1) \leq \pi. \quad (65)$$

According to [17, Theorem 3.1], if Γ is smooth, if $k_1, k_2 \neq 0$, and if (2) is assumed, a solution to (3)–(8) is unique if

$$0 \leq \arg(k_1), \arg(k_2) \leq \pi/2 \quad \text{or} \quad \pi/2 \leq \arg(k_1), \arg(k_2) < \pi. \quad (66)$$
The two sets of conditions (65) and (66) overlap, but are not identical. For example, if \(\arg(k_1) = \pi/2 \) and \(\arg(k_2) = 0 \) then (66) holds but not (65) – a fact we think is due to a flaw in the proof of [17, Theorem 3.1] which may affect the analysis of the solvability of [17, Eq. (4.5)]. In the present work we are chiefly interested in \(\arg(k_1) = 0, 0 \leq \arg(k_2) \leq \pi/2 \). Then both (65) and (66) guarantee that a solution to (3)–(8) is unique if \(\Gamma \) is smooth.

5.2. Unique solvability: the systems of integral equations

According to [15, Theorem 4.1], if \(\Gamma \) is smooth, if (65) holds, and if \(c \) is as in (24), then the KM1 system (25) is uniquely solvable. The unique solution \(\mu, \rho \) gives, via (22) and (23), a unique solution to (3)–(8). As a consequence, the GL system and the Müller-Rokhlin equations, which correspond to the KM1 system with \(c = 1 \), are also uniquely solvable if both \(k_1 \) and \(k_2 \) are real and positive. In our numerical experiments with KM1 in Section 9, where \(\Re\{k_1\} \geq 0 \), we choose \(c \) in accordance with (24) as

\[
c = \varepsilon k_2/|\varepsilon k_2|.
\] (67)

According to [15, Theorems 4.2 and 4.3], if \(\Gamma \) is smooth and if both \(k_1 \) and \(k_2 \) are real and positive, then the KM2 system (32) is uniquely solvable. The solution gives, via (28) and (29), a unique solution to (3)–(8).

5.3. True and false eigenwavenumbers

When wavenumbers \(k_1, k_2 = \sqrt{\varepsilon k_1} \) at a given \(\varepsilon \) violate the conditions (65), a solution to (3)–(8) may, or may not, be unique. The same applies to solutions to the system of integral equations of Section 3 if the conditions on unique solvability of Section 5.2 are violated. If, for \(k_1 \) with \(\varepsilon \) that violates the conditions of Section 5.2, we numerically detect systems of integral equations with non-trivial homogeneous solutions we call \(k_1 \) an eigenwavenumber. Eigenwavenumbers can be of two types: those that correspond to non-vanishing eigenfields \(U(r) \) that satisfy the boundary conditions (5) and (6) and those that correspond to \(U(r) \) that are null-fields, or violate the boundary condition (5). We call the former type true eigenwavenumbers and the latter type false eigenwavenumbers. False eigenwavenumbers that correspond to fields that violate (5) can only occur for the KM2 system since the other systems, by construction, satisfy that boundary condition.

5.4. Existence: the KM1 system on a boundary with corners

This section discusses some issues related to the existence of solutions to the KM1 system (25) when \(\Gamma \) has corners, \(\varepsilon \) is close to or on the negative real axis, and \(k_1 \) is real and positive so that \(c \approx -i \) according to (67).
In view of the singular nature of the kernels of the integral operators in Section 4, and when \(r \in \Gamma \), the KM1 system can be written in the form

\[
\begin{bmatrix}
I + \lambda_1 K_0 + C_1 \\
C_2 \\
C_3
\end{bmatrix}
\begin{bmatrix}
\lambda (r) \\
\mu (r) \\
\rho (r)
\end{bmatrix}
=
\begin{bmatrix}
f_1 (r) \\
f_2 (r)
\end{bmatrix},
\tag{68}
\]

where \(C_1, C_2, C_3, \) and \(C_4 \) are compact integral operators on \(\Gamma \) also in the presence of corners, \(K_0 \) and \(K_0^A \) are as in (49) and (55), and

\[
\lambda_1 = \frac{1 - \varepsilon}{1 + \varepsilon}, \quad \lambda_2 = \frac{c - \varepsilon}{c + \varepsilon}.
\tag{69}
\]

The operators \(K_0 \) and \(K_0^A \) are singular bounded integral operators on \(\Gamma \). The operator \(K_0^A \) is the same as the operator denoted \(K \) in [12, Eq. (10)].

The system (68) is a compact perturbation of the decoupled system

\[
\begin{bmatrix}
I + \lambda_1 K_0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
\lambda (r) \\
\mu (r) \\
\rho (r)
\end{bmatrix}
=
\begin{bmatrix}
f_1 (r) \\
f_2 (r)
\end{bmatrix},
\tag{70}
\]

whose spectral properties, including the essential spectrum of \(K_0 \) and \(K_0^A \) in planar domains with corners, have been analyzed in [19].

In particular, when \(\Gamma \) has a corner with opening angle \(\theta \) and when \(\varepsilon \) of (69) is real and such that

\[
-\left|1 - \frac{\theta}{\pi}\right| < -\frac{1}{\lambda_1} < \left|1 - \frac{\theta}{\pi}\right| \quad \Leftrightarrow \quad \frac{|\pi - \theta| + \pi}{|\pi - \theta| - \pi} < \varepsilon < \frac{|\pi - \theta| - \pi}{|\pi - \theta| + \pi},
\tag{71}
\]

then (70) does not in general have a solution \(\mu \) in the Sobolev–Besov space \(H^{1/2} \), corresponding to boundary values of potentials with finite absolute energy in the sense of [12, Section 4]. There exists, however, a solution \(\mu \in H^{1/2} \) for \(\lambda_1 \) arbitrarily close to, but not on, the real axis. We remark that similar restrictions on the solvability of (70) apply to \(\rho \) if \(-1/\lambda_2 \) is real and in the interval specified by (71). Since, by assumption on \(\varepsilon \) and \(k_1 \), the parameter \(\lambda_2 \) of (69) is not close to the real axis and we disregard this possibility.

The essential spectrum of an integral operator is invariant under compact perturbations. Therefore the solvability analysis for (70) also applies to (68). When (71) holds in our numerical examples of Section 9, we then add a small imaginary number \(i \delta, \delta > 0 \), to \(\varepsilon \) and solve (68) in the limit \(\delta \to 0^+ \). This corresponds to \(\lambda_1 \) approaching the real axis from below in the complex plane. The limit solutions are indicated with a plus-sign superscript.

6. The Drude model and surface plasmon waves

We are interested in wave phenomena which under certain conditions appear in metallic objects with sharp edges. Let us assume that there is
vacuum in Ω_1, that k_1 is real and positive, and that Ω_2 is a metal. Certain metals, such as silver, have permittivities that often are well approximated by the Drude model, which in our context reads

$$\varepsilon = 1 - \frac{k_p^2}{k_1^2 + ik_1\gamma}.$$ \hspace{1cm} (72)

Here k_p is the plasma wavenumber and $\gamma \geq 0$ is a damping constant. The equation says that ε becomes real and negative when $k_1 < k_p$ and $\gamma \to 0^+$. We mention the Drude model merely to explain why real and negative ε can occur for real and positive k_1.

When ε is real the time average of the electric and the magnetic energy densities, normed by the vacuum permeability, are

$$\langle w_{el}(r) \rangle = \frac{1}{4k_i^2} |\nabla U(r)|^2, \quad r \in \Omega_i, \quad i = 1, 2,$$ \hspace{1cm} (73)

$$\langle w_{ma}(r) \rangle = \frac{1}{4} |U(r)|^2, \quad r \in \mathbb{R}^2.$$ \hspace{1cm} (74)

This means that if $\varepsilon < 0$, then $\langle w_{el}(r) \rangle$ is negative inside Ω_2 while $\langle w_{ma}(r) \rangle$ is positive and electromagnetic waves cannot propagate in Ω_2. It is, however, possible for so-called surface plasmon waves to propagate without damping in a direction along Γ.

Surface plasmon waves are simple to analyze for planar Γ and this analysis is of help in understanding these waves along curved Γ. The analysis [20, Appendix I] gives that surface plasmon waves can occur only for $\varepsilon < -1$, that the waves are evanescent (which roughly means exponentially decaying) in directions perpendicular to Γ, and propagate along Γ with wavenumber

$$k_{sp} = k_1 \sqrt{\frac{|\varepsilon|}{|\varepsilon| - 1}}, \quad \varepsilon < -1.$$ \hspace{1cm} (75)

Surface plasmon waves can always propagate when $\varepsilon < -1$ and $k_1 > 0$, but their excitation by an incident wave $U^{\text{in}}(r)$ requires special couplers or that Γ is somehow rough [20, Sections 2.2 and 6.7]. Surface plasmon waves are particularly easy to excite when Γ has corners and ε is infinitely close to the interval where (71) holds. That is, when ε approaches the interval

$$\frac{|\pi - \theta| + \pi}{|\pi - \theta| - \pi} < \varepsilon < -1$$ \hspace{1cm} (76)

from above in the complex plane. Note that, in (75), the wavenumber k_{sp} diverges as $\varepsilon \to -1^-$. More details on surface plasmon waves can, for example, be found in [2, 22]. Their excitation by corners is the topic of the next section.
7. Singular fields at corners

The presence of corners on Γ has a great influence on the excitation of surface plasmon waves and, as a consequence, on scattering and absorption cross sections. The mechanism behind this is governed by certain singular fields which can be determined by quasi-static analysis of the magnetic eigenfields on a wedge, see [5]. We now briefly review some results on this topic.

7.1. Quasi-static analysis

In the limit $k_1 \to 0$ and for certain ε there can exist magnetic eigenfields. These eigenfields are non-trivial solutions to

$$\Delta U(r) = 0, \quad r \in \Omega_1 \cup \Omega_2, \quad (77)$$

$$\lim_{\Omega_1 \ni r \to r^0} U(r) = \lim_{\Omega_2 \ni r \to r^0} U(r), \quad r^0 \in \Gamma, \quad (78)$$

$$\lim_{\Omega_1 \ni r \to r^0} \varepsilon \nu^0 \cdot \nabla U(r) = \lim_{\Omega_2 \ni r \to r^0} \nu^0 \cdot \nabla U(r), \quad r^0 \in \Gamma, \quad (79)$$

$$\lim_{|r| \to \infty} U(r) = 0, \quad (80)$$

and they are important in the analysis of cross sections of objects Ω_2 that are much smaller than the wavelength $2\pi/k_1$.

It follows from (77)–(80) that the eigenfields have zero electric energy when $\Im \{\varepsilon\} = 0$, that is,

$$\int_{\Omega_1} |\nabla(U(r))|^2 dS + \frac{1}{\varepsilon} \int_{\Omega_2} |\nabla(U(r))|^2 dS = 0, \quad (81)$$

where dS is an element of area.

An alternative and, perhaps, more common analysis uses the scalar electric potential $V(r)$, related to $E(r)$ of (12) via $E(r) = -\nabla V(r)$. The eigenproblem for $V(r)$ is the same as that for $U(r)$ but with ε replaced by $1/\varepsilon$ in the quasi-static boundary condition (79) and in (81). Since $U(r)$ and $V(r)$ give rise to the same electric field we have

$$\nabla V(r) = \begin{cases} A\nabla U(r) \times \hat{z}, \quad r \in \Omega_1, \\ A\varepsilon^{-1}\nabla U(r) \times \hat{z}, \quad r \in \Omega_2, \end{cases} \quad (82)$$

where A is a normalization constant. The quasi-static potentials $U(r)$ and $V(r)$ are still complex representations of physical fields via (9) and $V(r,t) = \Re \{V(r)e^{-it}\}$.

7.2. Eigenfields of the semi-infinite wedge

Magnetic and electric eigenfields can, in the limit $k_1 \to 0$, only occur when ε is real and negative. When Γ is smooth there is a discrete set of ε that admits eigenfields. When Γ is the open boundary of a semi-infinite...
wedge of opening angle θ there exist eigenfields for all ε that satisfy (71). These wedge eigenfields satisfy (77)-(79) and (81), but not (80), and are often used in the static analysis of singular fields in domains containing finite non-smooth objects. See [3] for a rigorous justification of this practice.

The wedge eigenfields describe the singular fields that can arise at corners of a finite object Ω_2. They shed light on how incident waves can couple very strongly to surface plasmon waves and affect scattering and absorption cross sections of objects for all wavenumbers k_1. Let ϕ be the azimuth angle and let Γ be given by $\phi = \pm \theta/2$. Then the wedge eigenfields can be found via separation of variables and have the form

$$U(r) = |r|^{\pm \i \zeta} \Theta(\phi),$$

where ζ is a real and positive parameter that solves a transcendental equation [5, Section 3]. The function $\Theta(\phi)$ is odd or even depending on whether $\varepsilon < -1$ or $\varepsilon > -1$.

The gradients $\nabla U(r)$ of the wedge eigenfields (83) make both integrals in (81) divergent. The time-average power loss (absorbed power) inside a disk of radius R, centered at the corner vertex of the wedge, is proportional to

$$\lim_{\Im m \{\varepsilon\} \to 0^+} \Im m \{\varepsilon\} \int_{S_w} \left| \nabla (U(r)) \right|^2 dS,$$

where S_w is the part of the disk that overlaps the wedge. The limit in (84) is non-zero and independent of $R > 0$. This means that power is absorbed by the wedge even though it becomes lossless as $\Im m \{\varepsilon\} \to 0^+$. A quasi-static analysis shows that Poynting’s theorem [18, Section 1.3.3] is satisfied. The power absorption is located in a disk with an infinitesimally small R and is equal to the time-average power flow through the boundary of a disk with arbitrarily large R. A detailed analysis shows that, for the wedge eigenfields in (83), this power absorption depends strongly on ε and goes to zero as $\varepsilon \to -1$.

7.3. Coupling to surface plasmon waves

The plane wave excitation of surface plasmon waves along a boundary Γ with a corner can, heuristically, be explained as follows: $U^{\text{in}}(r)$ induces a magnetic field in the vicinity of the corner that we refer to as a corner field. The corner field resembles the wedge eigenfields (83). According to (9), the time-harmonic magnetic wedge eigenfield associated with (83) is

$$H(r, t) = \Theta(\phi) \cos(\zeta \log |r| \pm t).$$

This eigenfield can be viewed as a wave that travels radially inwards ($+t$) or outwards ($-t$) with a local wavelength, $2\pi |r| / \zeta$, that increases linearly with $|r|$. The corresponding time-harmonic corner field inherits these characteristics. At the value of $|r|$ where the local wavelength equals the wavelength...
of the surface plasmon waves, $2\pi/k_\text{sp}$ see (75), the corner field couples to the surface plasmon waves on Γ. Only odd corner fields can couple to surface plasmon waves since the latter only exist for $\varepsilon < -1$, see Section 6.

8. Cross sections

With the incident plane wave $U^\text{in}(r)$ of (1), the scattering cross section, σ_sc, and the absorption cross section, σ_abs, of Ω_2 are defined as time averages of the scattered and absorbed power densities divided by the time average of the incident power density. Let Γ_C be a contour enclosing Ω_2 and with outward unit normal ν. Then [18, Section 4.2]

$$\sigma_\text{sc} = \Im \left\{ \frac{1}{k_1} \int_{\Gamma_C} (\nu \cdot \nabla U^\text{sc}(r)) U^\text{sc}(r) \, d\ell \right\},$$ \hspace{1cm} (86)

$$\sigma_\text{abs} = -\Im \left\{ \frac{1}{k_1} \int_{\Gamma_C} (\nu \cdot \nabla U(r)) U(r) \, d\ell \right\}.$$ \hspace{1cm} (87)

The total cross section in the direction d of $U^\text{in}(r)$ is

$$\sigma_\text{tot} = \sigma_\text{sc} + \sigma_\text{abs}$$ \hspace{1cm} (88)

and can, alternatively, be computed as the limit [18, Section 4.4]

$$\sigma_\text{tot} = -\lim_{|r| \to \infty} \Im \left\{ \frac{4}{k_1} U^\text{sc}(|r|d) \sqrt{\frac{\pi k_1 |r|}{2}} e^{-i(k_1 |r| - \pi/4)} \right\}.$$ \hspace{1cm} (89)

9. Numerical examples

In a series of progressively more challenging problems we now put the integral equations of Section 3 and the discretization techniques of Section 4 to the test. Only a few of our problems have (semi-)analytic solutions. When assessing the accuracy of computed quantities we therefore often adopt a procedure where to each numerical solution we also compute an overresolved reference solution, using roughly 50% more points in the discretization of the integral equations. The absolute difference between these two solutions is denoted the estimated absolute error.

Our codes are implemented in MATLAB, release 2016b, and executed on a workstation equipped with an Intel Core i7-3930K CPU. The implementations are standard and rely on built-in functions.

9.1. Numerical tests of integral operators

The operators S_k, K_k, K^A_k and T_k, $r \in \Gamma$, have been implemented on the “star” boundary [7, 10] parameterized as

$$r(s) = \frac{9}{20} \left(1 + \frac{20}{81} \sin(5s) \right) (\cos(s), \sin(s)), \hspace{1cm} -\pi \leq s \leq \pi.$$ \hspace{1cm} (90)
Table 1: True and false eigenwavenumbers for the unit circle with $\varepsilon = 2.25$.

<table>
<thead>
<tr>
<th>k_1</th>
<th>multiplicity</th>
<th>nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.380109395443269 - 0.303953834460040i</td>
<td>simple</td>
<td>false</td>
</tr>
<tr>
<td>3.041565475205771 - 1.041465761622153i</td>
<td>double</td>
<td>true</td>
</tr>
<tr>
<td>3.815540575399378 - 0.309076450175921i</td>
<td>double</td>
<td>false</td>
</tr>
<tr>
<td>4.89203238544720 - 0.631231166352111i</td>
<td>double</td>
<td>true</td>
</tr>
</tbody>
</table>

Product integration weights for kernels with logarithmic singularities are computed using analytical methods and recursion [10, Appendix A], while local regularization [8, Section 2.2] is used for hypersingular kernels.

The compositions of operators $K_kK_k - S_kT_k$ and $K_k^A K_k^A - T_kS_k$ act as the identity operator on simple smooth layer densities, compare (20) and (21). For example, with $k = 3.8 + 1.3i$, $f(r(s)) = \cos(3s) + i \sin(7s)$, and 384 discretization points on Γ of (90), the relation $(K_kK_k - S_kT_k)f(r) = f(r)$ holds with a relative accuracy of $4 \cdot 10^{-15}$ in L^2-norm. With 1152 discretization points, the relation $(K_k^A K_k^A - T_kS_k)f(r) = f(r)$ holds with a relative accuracy of $4 \cdot 10^{-14}$.

9.2. Eigenwavenumbers for the unit circle

We first choose $\varepsilon = 2.25$ so that $\arg(k_1) = \arg(k_2)$, let Γ be the unit circle, and look for true and false eigenwavenumbers k_1 with $\Re\{k_1\} > 0$ using 352 discretization points on Γ. We investigate the KM2 system (32) and the KM1 system (25), which for real positive ε reduces to the GL system. See Section 5.3 for the definition of true and false eigenwavenumbers.

As it turns out, the eigenwavenumbers of the KM1/GL system and those of the KM2 system are the same. A few examples are listed in Table 1. The true eigenwavenumbers are confirmed to a relative precision of $4 \cdot 10^{-16}$ by comparison with semi-analytic results, computed as solutions to transcen-
We then choose $\varepsilon = -1.1838$, which is used in [5]. The condition numbers of the matrices resulting from discretization of the KM1 system and the GL system are studied as a function of $k_1 \in [0, 10]$ using 384 discretization points on Γ. Figure 2 shows that the KM1 system does not exhibit any false eigenwavenumber, in agreement with the theory of Section 5.2. The GL system exhibits eight false eigenwavenumbers. Furthermore, the KM1 system leads to generally better conditioned matrices. The sharp peaks that are common to the two images of Figure 2 are caused by eigenwavenumbers close to, but below, the real k_1-axis.
9.3. Eigenfield for a “star”

We choose \(\varepsilon = 2.25 \) for the “star” of (90), again look for non-trivial solutions to the homogeneous KM1/GL system, and then compute eigenfields \(U(r) \) via (22) and (23) at \(10^6 \) field points placed on a Cartesian grid in the box \(B = \{ -0.6 \leq x \leq 0.6, -0.55 \leq y \leq 0.65 \} \). The eigenfields are normalized with their largest value in \(B \).

Figure 3 shows the eigenfield for the simple eigenwavenumber \(k_1 = 13.21401616284493 - 1.636497767435982i \) along with the estimated absolute field-error computed with 976 discretization points on \(\Gamma \). The accuracy is very high, also close to \(\Gamma \), which demonstrates the power of the near-boundary evaluation scheme of Section 4.

9.4. Eigenfield for a one-corner inclusion

We now let \(\Gamma \) be a closed contour with one corner, parameterized as

\[
r(s) = \sin(\pi s)(\cos((s - 0.5)\theta), \sin((s - 0.5)\theta)) , \quad 0 \leq s \leq 1.
\]

We choose \(\varepsilon = 2.25 \) and \(\theta = \pi/2 \) and repeat the experiment of Section 9.3 with the KM1/GL system. RCIP acceleration is activated due to the presence of the corner, see Section 4, and 320 discretization points are placed on the coarse mesh on \(\Gamma \). Figure 4 shows the eigenfield for the simple eigenwavenumber \(k_1 = 9.701129417644246 - 2.000374579086419i \) along with the estimated absolute error at \(10^6 \) field points. The accuracy is even higher than in the example of Section 9.3, which demonstrates the power of RCIP and that boundary value problems on domains with corners are not necessarily more difficult to solve than boundary value problems on smooth domains.
9.5. Surface plasmon wave for a one-corner inclusion

We solve the KM1 equations with $\varepsilon = -1.1838$, $k_1 = 18$, Γ as in (91), $\theta = \pi/6$, and $U^{\text{in}}(r)$ as in (1) with $d = (\cos(5\pi/12), \sin(5\pi/12))$. This setup is chosen as to create a surface plasmon wave and to resemble the setup of [5, Section 4.4.1].

The KM1 system (68) is solved for the limit solution μ^+, ρ^+. The representations (22) and (23) are used for $U^+(r)$ and (9) is used for $H^+(r,0)$. Some resolution issues, related to the relatively small opening angle $\theta = \pi/6$ and quadrature panels on opposing sides of the corner vertex lying close to each other, require that the number of points used in the underlying quadrature is increased from $n_{\text{pt}} = 16$ to $n_{\text{pt}} = 22$. Compare [9, Section 21.1].

Figure 5 shows a sequence of zooms of $H^+(r,0)$ in the vicinity of the corner vertex, along with a plot of the estimated absolute field error. There are 1100 discretization points on the coarse mesh on Γ and each computational box contains 10^6 field points on a Cartesian grid. According to the analysis of Section 6, a surface plasmon wave can propagate along Γ with a wavelength $2\pi/k_{\text{sp}} \approx 0.138$. Figure 5(a) shows that this indeed happens. An animation of a surface plasmon wave $H^+(r,t)$, $t \in [0,2\pi]$, along Γ can be found in [14].

The estimated field accuracy is not affected by the proximity of a field point to the corner vertex, as shown in Figures 5(b,d,f). At least thirteen digits can be obtained irrespective of the level of zoom. Figure 5(a,c,e) can serve as an illustration to the discussion in Section 7.3 of how the odd magnetic eigenfields (85) couple to the surface plasmon waves.

9.6. Fields and gradient fields

We compare the performance of the KM1 equations to the performance of the KM2 equations where (35) is used for field evaluations at points r close to Γ. The first setup has $\varepsilon = 2.25$, $k_1 = 18$, Γ as in (91), $\theta = \pi/2$, U^{in} as in (1), and $d = (\cos(\pi/4), \sin(\pi/4))$. Both the field $H(r,0)$ and the gradient field $\nabla H(r,0)$ are computed. Figure 6 shows that the achievable accuracy in $H(r,0)$ and $\nabla H(r,0)$ is improved with around one and three digits, respectively, when the KM2 system with (35) is used rather than the KM1 equations. There are 800 discretization points on the coarse mesh on Γ and 10^6 field points on a Cartesian grid in the box \{-0.1 \leq x \leq 1.1, -0.54 \leq y \leq 0.54\}.

Figure 7 shows results for a second setup with $\varepsilon = -1.1838$, the geometry being the same as in the paragraph above. We only use the KM1 equations. The surface plasmon wavelength of $2\pi/k_{\text{sp}} \approx 0.138$ corresponds to 17.6 wavelengths along Γ – a number that agrees well with the wave pattern of Figure 7(a). Note that the gradient field $\nabla H^+(r,0)$ of Figure 7(b) diverges in the corner and that the colorbar range is limited to [0,133] as to provide full color dynamics away from the corner. The absolute gradient field error shown in Figure 7(d) corresponds to ten accurate digits or better.
Figure 5: A corner zoom for $\varepsilon = -1.1838$, Γ as in (91), $\theta = \pi/6$, $k_1 = 18$, and $d = (\cos(5\pi/12), \sin(5\pi/12))$: (a,b) $H^+(r, 0)$ of (9) and \log_{10} of estimated absolute error; (c,d) ten times magnification; (e,f) 100 times magnification.
Figure 6: $H(r,0)$ and $\nabla H(r,0)$ with $k_1 = 18$, $\varepsilon = 2.25$, $\theta = \pi/2$, and $d = (\cos(\pi/4), \sin(\pi/4))$; (a) The field $H(r,0)$; (b) The field $|\nabla H(r,0)|$; (c) estimated absolute error in $H(r,0)$ with KM1; (d) estimated absolute error in $|\nabla H(r,0)|$ with KM1; (e) estimated absolute error in $H(r,0)$ with KM2 and (35); (f) estimated absolute error in $|\nabla H(r,0)|$ with KM2 and (35).
Figure 7: $H^+(r, 0)$ and $\nabla H^+(r, 0)$ with $k_1 = 18$, $\varepsilon = -1.1838$, $\theta = \pi/2$, and $d = (\cos(\pi/4), \sin(\pi/4))$: (a) The field $H^+(r, 0)$; (b) The (diverging) field $|\nabla H^+(r, 0)|$ with colorbar range set to $[0, 1.33]$; (c) estimated absolute error in $H^+(r, 0)$ with KM1; (d) estimated absolute error in $|\nabla H^+(r, 0)|$ with KM1.

9.7. The absorption cross section

We compute the limit absorption cross section σ_{abs}^+ of (87) for a scatterer with Γ as in (91), $\theta = \pi/2$, $d = (\cos(\pi/4), \sin(\pi/4))$, $k_1 = 18$, $\varepsilon < 0$, and Γ_C as the unit circle centered at $r = 0.5$. The KM1 equations are used. Figure 8 shows results for σ_{abs}^+, for a quantity that is machine epsilon ϵ_{mach} times the condition number κ of the system matrix, for the estimated absolute error in σ_{abs}^+ and, as a consistency check, for the absolute difference between σ_{tot}^+ computed from (88) and from (89).

The curves in Figure 8(a,b) are resolved by 1839 different values of ε, 1280 discretization points on the coarse mesh on Γ, and with $n_{pt} = 16$ in the underlying quadrature. The magnified curves in Figure 8(c,d) use 1239 different values of ε, 2560 discretization points on the coarse mesh, and $n_{pt} = 32$. One can see that the condition number of the discretized KM1 system is low for most values of ε, with the exception of values that make $(\varepsilon + 1)/(\varepsilon - 1)$ belong to the set $\{-1, 0, 0.5\}$.

Figure 8(d) also shows that high accuracy in σ_{abs}^+ requires at least ten discretization points per surface plasmon wavelength and that it is not enough to merely resolve the incident plane wave. For example, with $(\varepsilon + 1)/(\varepsilon - 1) =
Figure 8: The absorption cross section σ^+_{abs} of (87) of an inclusion with Γ as in (91), $\theta = \pi/2$, $d = (\cos(\pi/4), \sin(\pi/4))$, $k_1 = 18$, and $\varepsilon < 0$: (a) σ^+_{abs}; (b) σ^+_{abs}, ϵ times the condition number κ, estimated absolute error in σ^+_{abs}, and the absolute difference of σ^+_{tot} from (88) and from (89) with logarithmic scale on the y-axis; (c,d) higher resolution of (a,b) in the interval $0 < (\varepsilon + 1)/(\varepsilon - 1) \leq 0.1$.

$6 \cdot 10^{-4}$, which corresponds to about 200 surface plasmon wavelengths along Γ and 12.8 discretization points per surface plasmon wavelength on the coarse mesh, the estimated absolute error in σ^+_{abs} is around 10^{-12}. Smaller values of $(\varepsilon + 1)/(\varepsilon - 1)$ give a much larger error since the number of discretization points in Figure 8(c,d) is fixed while the surface plasmon wavelength $2\pi/k_{\text{sp}}$ decreases with $(\varepsilon + 1)/(\varepsilon - 1)$.

The rapid variations in σ^+_{abs} for $0 < (\varepsilon + 1)/(\varepsilon - 1) < 0.5$, seen in Figure 8, are due to the coupling between corner fields and surface plasmon waves. For $-0.5 < (\varepsilon + 1)/(\varepsilon - 1) < 0$ there are no surface plasmon waves and σ^+_{abs} varies less. The general behavior of σ^+_{abs} in Figure 8 can be explained using an analytic expression for the absorbed power of the wedge eigenfields, obtained by inserting (83) into (84), multiplied with the squared amplitudes of the numerically determined corner fields.
10. Conclusions

The mathematical and physical theory behind the excitation of surface plasmon waves in finite metallic objects with sharp edges by incident plane waves is rather involved. The present work demonstrates that a robust integral equation-based solver for the underlying Helmholtz transmission problem can be constructed and used for the detailed study of surface plasmon waves in difficult situations. The solver combines integral equations due to Kleinman and Martin with mildly modified off-the-shelf numerical tools such as Nyström discretization, RCIP acceleration, and a product integration scheme for the evaluation of layer potentials. No assumptions about the solution are needed beyond those that are explicit in the PDE formulation of the problem. Corner fields and surface plasmon waves can be computed very accurately and that is crucial for the evaluation and understanding of rapidly varying absorption cross sections.

Acknowledgement

This work was supported by the Swedish Research Council under contract 621-2014-5159.

References

[13] http://functions.wolfram.com/03.03.06.0005.01.

